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STABILITY DIAGRAM FFOR AN ADAPTIVE RECURSIVE FILTER

lLoren R, McMurray
Electronics Research Center
Electronic Devices Division /
Rockwell International
\ 3370 Miraloma Avenue
X Anaheim, California 92803

Abstract

¥

Adaptive digital filters are being used and proposed for
various applications. The adaptive recursive filter by
Feintuch s an example. A stability triangle is developed
analytically for this nonlinear adaptive recursive filter using
a frozen-time viewpoint, There are reasons to believe that
the average stability triangle is correlated to the true
stability region for all modes of operation. Computer simu-
lation of two cases of the adaptive filter in the coefficient
evaluation mode shows that the stability triangle predicts the
stable region with reasonable accuracy for the cases

considered,
\ 1. Introduction

Adaptive digital filters have been investigated for a
variety of applications, especially in the area of signal proc-~
essing. The adaptive transversal (nonrecursive) filter is
well known in this area [4,5]. Adaptive recursive filters
have also been investigated [1,3).

The stability of adaptive filters is of interest to those who
intend to use them, The stability of adaptive recursive fil-
ters are especially difficult to determine analytically since
the filter is nonlinear and the stability criteria are functions
of several quantities.

The stability of the adaptive recursive filter defined by
Feintuch [1] has been examined analytically. Inequalities
defining a triangle are derived. The derivation is sirhple
with a minimum of assumptions, but it does use a frozen-
time viewpoint. Consequently the triangular area tends to be
a necessary but not a sufficient condition for stability. The
stability triangle concept i8 checked for one mode of opera-
tion of the adaptive recursive filter by simulation of two
specific examples. The triangle predicted the stable region
with reasonable accuracy.

2. Stability Tri

Feintuch [1] defines the following adaptive recursive

filter:

NF-1 ’ NB
y(n) = Z lk(n) x (n-k) + Z:l bm(n) y(n-m) 1)
= ms=
«(n) = r(n) - y(n) @)
a,(n+l) = a (n) + py «() x (n-k) @)
bm(m 1) = bm(n) thp (n) y(n-m) @)

where n is the iteration number, x(n) is the input, r(n) is a
reference quantity, ¢(n) is the error in the output, a,(n) and
bm(n) are the adapting feed forward and feedback weights,
and up and pp are the feed forward and feedback gain
constants .,

The stability criteria will be derived by considering one
instant of time rather than the normal approach of taking a
limit as the number of iterations becomes very large. The
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advantage of freezing time is the ease in which results about
a nonlinear filter can be obtained. The disadvantage is that
the stability criteria will not be complete, But in dealing
with nonlinear equations, a partial solution which provides a
starting point for a detailed analysis {s much better than no
solution,

Assume that y(n,) and cz(no) have just been computed
using Eq (1) and (2). By substituting (1) into (2), €(ng) is
given by Eq (5)

NF-1
«ny) =T - :1:0 a ) x (1 - k)
NB
S Z b (n) ¥y ~ m) (5)
m=1

i.e;, ¢2(n0) is a function of present and past inputs, of past
outputs, and of present weights, Figure 1 shows the error
squared for the case of one feed forward and one feedback
weight. The error squared is a parabolic cylinder. If
cz(no) is non zero, it can be reduced by modifying the
present weights, see Figure 1. In particular, let the weights
be modified proportional to the negative of the first
derivative.

) = a () - 0.5y acm)/oa, @) ®)
b () =b () -0.5u, a.z(no)/abm(no) )

Since changing a, (n,) and by (n,) do not affect r(ng), x(n,~K),
nor y(n,-m) of Eq (5),

Tn) = ap(n) + g (o) x(n -k) ®)
b @) =b @)Ky «@)y@ -m) @
€2(n,)

la{no) bing))
[8lng) Blng)]

xing)

ying-1)

Figure 1, Error Squared for y(n) = a(n) x(n) + bmy(n-1)

Two observations are to be made, First, & (n,) and
By (ng) can be used as initial estimates for ay(n,+1) and
bming+1), respectively. Repeating this process for each
value of n results in Eq (3) and (4). This can be considered
as another derivation of E Sa) and (4) since the derivation
differs from that given in {1),




The second observation is that the values of up and up
must be constrained to lie within certain bounds if cz(no) }s
to be reduced by using k(ng) and by(ng). Let #2(n,) denote
the value of the error squared when us?ng the modlﬂed
weights, and let «2(ng) denote its value when using the un-
modified initial weights. One wants

) < ) (10)

Rewriting Eq (5) using @ and b and then substituting
Eq (8) and (9) for their values gives

NF-
?(no): 4(nn) 1 - Hp ;}

1 NB
x%(n_-k) - ug 21 Ym,-m} a1y
£

1t follows that

NF-1 NB

2 2
0<pup Z x“(n -k) ‘ up Z y (n -m)< 2
k=0 m=1

(12)

is equivalent to inequality (10).

This is the main stability criterion, and several
observations will be made about it. To sitmplify the notation,
define I'(n) as

NF-1 NB

. 2 2
I'(n) = k. Z x"(n-k) + p 2 y (n-m)
F B

k=0 m=1

(13)

The derivation of inequality (12) does not specify the
nature of the inputs and outputs, e.g., deterministic and/or
statistical, and hence should apply to both.. Furthermore,
the mode of operation is not specified, e.g., signal enhance
or interference cancel, and hence should apply to all of them,

Two check points exist on the stability criterion, If NB
is zero, Eq ('), (2) and (3) become the well known (non
recursive) adaptive transversal filter. Inequality (12)
becomes

NF-1
0 < b Z: xz(n-k) <2
k=0

which coincides with a sufficient stability criterion of the
transversa) filter [4). Also, if x(n) and r(n) are zero for

n >ny - NF, then the filter is recursive only and goes into
a turn off state if stable. A sufficient condition for y(n) to
converge to zero for this situation is given in [2], namely if

(14)

NZB
2 1
b” (n,) <Y< gn (15)
Mo m 1 NB
and if
0 uy NB Max yz(nl -m) m=12,..,NB}s2  (16)
This is reasonably consistent with
NB
2
0« by z:ly (n-m) < 2 (17)
m=

Inequality (12) requires either up or upg be positive, but
does not require both to be positive. It is common practice
to set the outputs and the weights to zero as initial values
for the adaptive filter. Under this initialization process,
I'(n) is dominated for the first few iterations by up X x2(n-k)

and ji must be positive if I'(n) isto be positive, If uBll nega-
tive, lihtan the lower and upper bound on I'(n) can be exceeded,
but if up and up are both positive, then the lower bound on

I'(n) 18 rently satisfled. For these reasons the
constraints
“F >0 (18)
“B >0 (19)

will be added. Inequalities (12), (18) and (19) define a
triangle in the @y, up) plane, and this triangle will be
denoted the chblﬂty triangle.

The above derivation of the stability criterion (12) does
not require the gains up and up to be constant, They need
only to be independent of the weights. They may be functions
of the iteration n and indices k and m. The general stability
criterion would then be

NF-1 NB

0< 2_;.) Hp (@)% 0-k) + zun'mm)yz (n-m) < 2
- m=1

(20)

In summary, a general stability triangle has been
derived. Modifying the weights using values of up and ug
from this triangle will reduce the present error. One could
expect this triangular area to be correlated with the true
stability region of a given application.

3. Application to the Coefficient Evaluation Mode

The stability triangle uses the philosophy that if the
present error is reduced the stability of the filter is enhanced.
It seems reasonable, but verification is left to a computer
simulation solving Eq (1) - (4) for the transient response of a
given situation.

The filter can be used in several modes of operation:
signil enhancing, interference cancelling, coefficient evalu-
ation, etc. To test the theory, two test cases were chosen
from the coefficient evaluation mode, see Figure 2. The
unknown fixed filter is a transversal or recursive filter with
fixed weights whose values are unknown.

WHITE ‘ xin UMKNORN

WOBE FIXED FILTER

GENERATOR 5
ADAPTIVE
RECURSIVE FILTER

Figure 2. Coefficient Evaluation Mode

This mode of operation was chosen as it has several
advantages for the test to be performed. If the adaptive
filter is at least as long as the fixed filter with respect to NF
and NB, the adaptive filter error squared will converge to
zero if stable, This allows a simple accurate numerical test
for stability. Also by keeping the filter lengths short, the
amount of computation was minimized.

The white noise generator was Gaussian, mean zero and
variance of one. At the start of each run the adaptive filter
was reset to zero. Stability was defined by

<1,0x 1030 stable

Zm) (1)

>1.0 x 10'30  unstable




Iteration was continued until one of the two states was reached
for some value of n, Since ¢(n) appears in the weight update
equations, it was assumed that further iterations would not
reverse the resuit and the run was terminated. After
monitoring the transient response of ¢2(n) on many runs, it

is believed that the approach was adequate.

The two cases considered were:
Case I: r(n) = 0.0273 x(n) -0.0371 x(n-1)

+0, 0252 x(n-2) +0, 8926 r(n-1)

-0.3984 r(n-2) (22)
Case II: r(n) = x(n-2) (23)

For both cases, NF = 5 and NB = 4 for the adaptive filter.
Several thousand Monte Carlo runs were made for each case.
The results are shown in Figures 3 and 4 by contours of

10 percent, 50 percent and 90 percent probability of being
stable. These contours are density functions. A Wp, up)
point picked from the 10 percent contour will on the average
result in the adaptive filter being stable 10 times out of every
100 Monte Carlo runs.
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Figure 4, Stability Diagram for Case Il

The average stability triangle was determined in the
following manner. I of Eq (13) varies from iteration to
iteration. In order to get some average triangle, it was
assumed that

NF-1
NF o 2 2. dei @4)

k=0

NB
NB o2 = Z yz(n-m) (25)

y m=1

80 that
i 2 2

rs Bp NF o, tHp NB ay (26)

The variance of x(n) is known to be unity from the white noise
generator. If the filter is stable,

¢ 2o 27

near convergence, Driving the fixed filter by the white noise
gave a measured o2 of 0.001 (analytical results not no{mally
available gave 0.061015) for case I, and for case Il, 0§ = og.
Thus

=5 ke + 0,004 kg Case I (28)

I‘=5pF +4yB Case 11 (29)

The lines for I' = 1 and I'= 2 are shown on Figures 3 and 4.

As can be seen, the contours of constant stability tend
to be parallel to a line of constant I', With very little
information, the stable region has been predicted by the
average stability triangle with reasonable accuracy.

There are "edge" effects in the contour lines near the
up and up axes, These effects are not explained by the
stability ?riangle theory.

A variety of p, ug) values were tried. Whenever
I'>2, or up < 0, or up < 0 the adaptive filter was unstable.

If NF and NB has been larger (smaller), then according
to the stability criterion (12) the stable region would be
smaller (larger) and the probability of a given (g, up)
point being stable would decrease (increase). A spot check
indicated this was true when NF and NB were made larger,
and it was partially true when NF and NB were made amaller,
For small NB, Eq (25) is not a good approximation, and this
is suspected of being the cause of the limited agreement.

Figures 3 and 4 show that for these two cases the true
stability region is not sharply defined. It has a transition
region from high to low probability of being stable.

4, Summary

A stability triangle has been derived analytically on
fundamental principles. It is expected that there would be
a correlation between an average stability triangle and the
true stability region. The theory should be applicable
whenever an average triangle can be determined, Computer
simulations of two cases in the coefficient evaluation mode
showed that it did apply there,
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